第二七五章二战獠牙(五) (1/2)
文学巴士 www.wx84.cc,地球黑科技传奇无错无删减全文免费阅读!
防护和生存力一直都是德国军舰最显着的性能强项,这与德国海军的设计思想有关,从前无畏时代起,德国军舰一直就是世界上最重视防御的军舰。德国人不仅在技术上强化了军舰的防御,也在设计取舍上加大了军舰防御的优先性:“俾斯麦”级是二战时代建成战列舰中装甲比重最大的战列舰,不含炮塔旋转部分的装甲总重量就达到了标准排水量的41.85%;也是二战时代防护尺度最大的战列舰,主装甲堡侧壁覆盖了70%的水线长度和全部的干舷高度。
“俾斯麦”级战列舰主要使用了以下几种钢材建造:
St42造船钢,于1931年在传统的二号造船钢基础上改进而成,用于建造俾斯麦的上层建筑和非装甲舱段舰体结构。其硬度为140-160HB,抗拉强度为420-510MPa,屈服强度为340-360MPa,弹性形变范围21%,性能不低于其它国家的同类产品。
St52造船钢,于1935年在着名的三号造船钢基础上改进而成,用于建造俾斯麦的装甲舱段和轻装甲舱段舰体结构。其硬度为160-190HB,抗拉强度为520-640MPa,屈服强度为360-380MPa,弹性形变范围21%,同时具有极佳的韧性和延展性,具有很强的抗断裂和撕裂能力。虽然其较软的材质抵抗动能穿甲弹的能力较弱,但它拥有优秀的构造强度保持能力和优良的鱼雷爆破冲击波抵抗能力。
Ww高弹性匀质钢,于1925年在传统的KNC装甲基础上发明,用于建造俾斯麦的主防雷装甲。其硬度为190-220HB,抗拉强度为650-750MPa,屈服强度为380-400MPa,弹性形变范围25%。
Wh高强度匀质钢,于1925年在传统的KNC装甲基础上发明,其中的高性能部分被用于建造“俾斯麦”级的所有水平装甲和首尾水线装甲带以及内部纵横向装甲。其硬度高达250-280HB,抗拉强度为850-950MPa,屈服强度为500-550MPa,弹性形变范围20%。
KCn/A表面渗碳硬化钢,于1928年在传统的KC装甲基础上发展而成,用于建造俾斯麦的舷侧、炮座、炮塔立面、指挥塔立面装甲。其表面硬度高达670-700HB,递减渗碳深度为40-50%,基材硬度为230-240HB,基材抗拉强度为750-800MPa,基材屈服强度为550-600MPa。
在纵向俯视图上,“俾斯麦”级的舰体为纺锤形,中间最粗,向首尾两端以抛物线形逐渐变细,这种形态的舰体很容易获得可靠的构造强度。在横向上,由于布置了厚重的上部舷侧装甲和上装甲甲板,该舰在上甲板下方就布置了第一主构造梁,并在第二甲板下方布置了第二主构造梁,使该舰拥有双层舰体上部主构造梁,而不是象其它多数国家战舰那样在主水平装甲下方布置单一的主构造梁,这样做的好处是充分利用了25米高46.8米宽的全部舰体横截面的尺度布置主承力结构,最大限度的增加了承力结构的几何力矩从而提高了强度。
“俾斯麦”级全舰分为44个主水密隔舱段,从第6到第38舱段为主装甲堡区域,舰体主装甲堡长达246.15米,最宽处46.8米,保护了70%的水线长度和85%-90%的浮力以及储备浮力空间,这是任何同时期战舰也无法做到的大手笔。在巨大的舰体主装甲堡内,德国人又在纵向和横向上安装了多重装甲和水密隔板。以锅炉舱段下部舰体为例,除了两舷各拥有宽度为11米的防雷隔离舱外,内部又被分成三个并排布置的水密隔舱,每个隔舱内安放着两台高压重油锅炉,俾斯麦拥有两个这样的舱段,它们中间被一个副炮弹药库舱段隔开。在这样的布置下,一个锅炉舱进水,战舰只会损失六分之一的动力,来自一个舷侧方向的攻击最多只能让战舰的两个锅炉舱进水,损失三分之一的动力。此外,与其它国家的战列舰不同,依托大量的横向、纵向和水平装甲,该舰在主水平装甲以上的上部舰体内也设置了大量的水密隔舱。加上下部舰体,俾斯麦全舰被细分成数千个大小不一的独立水密隔舱,就像锅炉一样,该舰每个重要的子系统都被以尽可能降低风险的原理分隔放置在这些隔舱内。
“俾斯麦”级的防雷隔离舱在舯部深11米,向舰尾方向逐渐减至10米,向舰首方向逐渐减至9米,由44mmSt52船壳-空气舱-36mmSt52油舱壁-油舱—90mmWw主防雷装甲板-16mmSt52防水背板构成,为两舱四层钢板的布置结构。该结构在动力舱段的主防雷装甲后面没有设置完整的过滤舱,而在副炮弹药库和主炮弹药库舱段的主防雷装甲到弹药库壁之间,管线舱和下方的储藏舱一起形成了完整的过滤舱。整体上看,除了弹药库舱段的布置相对还算严密以外,与同时期其它国家战列舰的防雷结构相比较,“俾斯麦”级的结构要简单得多,设计要求也不高,仅... -->>
防护和生存力一直都是德国军舰最显着的性能强项,这与德国海军的设计思想有关,从前无畏时代起,德国军舰一直就是世界上最重视防御的军舰。德国人不仅在技术上强化了军舰的防御,也在设计取舍上加大了军舰防御的优先性:“俾斯麦”级是二战时代建成战列舰中装甲比重最大的战列舰,不含炮塔旋转部分的装甲总重量就达到了标准排水量的41.85%;也是二战时代防护尺度最大的战列舰,主装甲堡侧壁覆盖了70%的水线长度和全部的干舷高度。
“俾斯麦”级战列舰主要使用了以下几种钢材建造:
St42造船钢,于1931年在传统的二号造船钢基础上改进而成,用于建造俾斯麦的上层建筑和非装甲舱段舰体结构。其硬度为140-160HB,抗拉强度为420-510MPa,屈服强度为340-360MPa,弹性形变范围21%,性能不低于其它国家的同类产品。
St52造船钢,于1935年在着名的三号造船钢基础上改进而成,用于建造俾斯麦的装甲舱段和轻装甲舱段舰体结构。其硬度为160-190HB,抗拉强度为520-640MPa,屈服强度为360-380MPa,弹性形变范围21%,同时具有极佳的韧性和延展性,具有很强的抗断裂和撕裂能力。虽然其较软的材质抵抗动能穿甲弹的能力较弱,但它拥有优秀的构造强度保持能力和优良的鱼雷爆破冲击波抵抗能力。
Ww高弹性匀质钢,于1925年在传统的KNC装甲基础上发明,用于建造俾斯麦的主防雷装甲。其硬度为190-220HB,抗拉强度为650-750MPa,屈服强度为380-400MPa,弹性形变范围25%。
Wh高强度匀质钢,于1925年在传统的KNC装甲基础上发明,其中的高性能部分被用于建造“俾斯麦”级的所有水平装甲和首尾水线装甲带以及内部纵横向装甲。其硬度高达250-280HB,抗拉强度为850-950MPa,屈服强度为500-550MPa,弹性形变范围20%。
KCn/A表面渗碳硬化钢,于1928年在传统的KC装甲基础上发展而成,用于建造俾斯麦的舷侧、炮座、炮塔立面、指挥塔立面装甲。其表面硬度高达670-700HB,递减渗碳深度为40-50%,基材硬度为230-240HB,基材抗拉强度为750-800MPa,基材屈服强度为550-600MPa。
在纵向俯视图上,“俾斯麦”级的舰体为纺锤形,中间最粗,向首尾两端以抛物线形逐渐变细,这种形态的舰体很容易获得可靠的构造强度。在横向上,由于布置了厚重的上部舷侧装甲和上装甲甲板,该舰在上甲板下方就布置了第一主构造梁,并在第二甲板下方布置了第二主构造梁,使该舰拥有双层舰体上部主构造梁,而不是象其它多数国家战舰那样在主水平装甲下方布置单一的主构造梁,这样做的好处是充分利用了25米高46.8米宽的全部舰体横截面的尺度布置主承力结构,最大限度的增加了承力结构的几何力矩从而提高了强度。
“俾斯麦”级全舰分为44个主水密隔舱段,从第6到第38舱段为主装甲堡区域,舰体主装甲堡长达246.15米,最宽处46.8米,保护了70%的水线长度和85%-90%的浮力以及储备浮力空间,这是任何同时期战舰也无法做到的大手笔。在巨大的舰体主装甲堡内,德国人又在纵向和横向上安装了多重装甲和水密隔板。以锅炉舱段下部舰体为例,除了两舷各拥有宽度为11米的防雷隔离舱外,内部又被分成三个并排布置的水密隔舱,每个隔舱内安放着两台高压重油锅炉,俾斯麦拥有两个这样的舱段,它们中间被一个副炮弹药库舱段隔开。在这样的布置下,一个锅炉舱进水,战舰只会损失六分之一的动力,来自一个舷侧方向的攻击最多只能让战舰的两个锅炉舱进水,损失三分之一的动力。此外,与其它国家的战列舰不同,依托大量的横向、纵向和水平装甲,该舰在主水平装甲以上的上部舰体内也设置了大量的水密隔舱。加上下部舰体,俾斯麦全舰被细分成数千个大小不一的独立水密隔舱,就像锅炉一样,该舰每个重要的子系统都被以尽可能降低风险的原理分隔放置在这些隔舱内。
“俾斯麦”级的防雷隔离舱在舯部深11米,向舰尾方向逐渐减至10米,向舰首方向逐渐减至9米,由44mmSt52船壳-空气舱-36mmSt52油舱壁-油舱—90mmWw主防雷装甲板-16mmSt52防水背板构成,为两舱四层钢板的布置结构。该结构在动力舱段的主防雷装甲后面没有设置完整的过滤舱,而在副炮弹药库和主炮弹药库舱段的主防雷装甲到弹药库壁之间,管线舱和下方的储藏舱一起形成了完整的过滤舱。整体上看,除了弹药库舱段的布置相对还算严密以外,与同时期其它国家战列舰的防雷结构相比较,“俾斯麦”级的结构要简单得多,设计要求也不高,仅... -->>
本章未完,点击下一页继续阅读