文学巴士 www.wx84.cc,重生之异界入世修行无错无删减全文免费阅读!
ps:具有模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。人脑有140亿神经元及10亿多神经键,
﹙一﹚神经网络计算机
具有模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。人脑有140亿神经元及10亿多神经键,人脑总体运行速度相当于每秒1000万亿次的电脑功能。用许多微处理机模仿人脑的神经元结构,采用大量的并行分布式网络就构成了神经电脑。神经电脑除有许多处理器外,还有类似神经的节点,每个节点与许多点相连。若把每一步运算分配给每台微处理器,它们同时运算,其信息处理速度和智能会大大提高。神经电子计算机的信息不是存在存储器中,而是存储在神经元之间的联络网中。若有节点断裂,电脑仍有重建资料的能力,它还具有联想记忆、视觉和声音识别能力。神经电子计算机将会广泛应用于各领域。它能识别文字、符号、图形、语言以及声纳和雷达收到的信号。判读支票,对市场进行估计,分析新产品。进行医学诊断,控制智能机器人。实现汽车自动驾驶和飞行器的自动驾驶,发现、识别军事目标,进行智能决策和智能指挥等。
实现技术
人工神经网络的主要特点是大量神经元之间的加权互连。这就是神经网络与光学技术相结合的重要原因。电子技术与光学技术相比,精确度高,便于程序控制,抗噪声能力强。但是,随着计算机芯片集成度和速度的提高,计算机中的引线问题已成为一个严重的障碍。由于电子引线不能互相短路交叉。引线靠近时会发生耦合,高速电脉冲在引线上传播时要发生色散和延迟,以及电子器件的扇入和扇出系数较低等问题,使得高密度的电子互连在技术上有很大困难。超大规模集成电路(vlsi)的引线问题造成的时钟扭曲(clockskew),严重限制了诺依曼型计算机的速度。而另一方面,光学互连是高度并行的,光线在传播时可以任意互相交叉而不会发生串扰,光传播速度极快,其延时和色散可以忽略不计,加上光学元件的扇入和扇出系数都很高。因此光学互连具有明显的优势。
正因如此,许多科学家早已开始研究采用光学互连来解决vlsi的引线问题,以及芯片之间、插板之间的连接问题。此外。光学运算的高度并行性和快速实现大信息量线性运算的能力,如矩阵相乘,二维线性变换,二维卷积、积分等,也是用光学手段实现人工神经网络的有利条件。光学信息处理虽有高速度及大信息量并行处理和优点,但要满足模糊运算和随机处理的要求还是远远不够的。光学信息处理性能的改进,要求在传统的线性光学处理系统中引入非线性,而这些问题的解决与神经网络的光学实现恰好不谋而合。光学信息处理中的许... -->>
ps:具有模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。人脑有140亿神经元及10亿多神经键,
﹙一﹚神经网络计算机
具有模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。人脑有140亿神经元及10亿多神经键,人脑总体运行速度相当于每秒1000万亿次的电脑功能。用许多微处理机模仿人脑的神经元结构,采用大量的并行分布式网络就构成了神经电脑。神经电脑除有许多处理器外,还有类似神经的节点,每个节点与许多点相连。若把每一步运算分配给每台微处理器,它们同时运算,其信息处理速度和智能会大大提高。神经电子计算机的信息不是存在存储器中,而是存储在神经元之间的联络网中。若有节点断裂,电脑仍有重建资料的能力,它还具有联想记忆、视觉和声音识别能力。神经电子计算机将会广泛应用于各领域。它能识别文字、符号、图形、语言以及声纳和雷达收到的信号。判读支票,对市场进行估计,分析新产品。进行医学诊断,控制智能机器人。实现汽车自动驾驶和飞行器的自动驾驶,发现、识别军事目标,进行智能决策和智能指挥等。
实现技术
人工神经网络的主要特点是大量神经元之间的加权互连。这就是神经网络与光学技术相结合的重要原因。电子技术与光学技术相比,精确度高,便于程序控制,抗噪声能力强。但是,随着计算机芯片集成度和速度的提高,计算机中的引线问题已成为一个严重的障碍。由于电子引线不能互相短路交叉。引线靠近时会发生耦合,高速电脉冲在引线上传播时要发生色散和延迟,以及电子器件的扇入和扇出系数较低等问题,使得高密度的电子互连在技术上有很大困难。超大规模集成电路(vlsi)的引线问题造成的时钟扭曲(clockskew),严重限制了诺依曼型计算机的速度。而另一方面,光学互连是高度并行的,光线在传播时可以任意互相交叉而不会发生串扰,光传播速度极快,其延时和色散可以忽略不计,加上光学元件的扇入和扇出系数都很高。因此光学互连具有明显的优势。
正因如此,许多科学家早已开始研究采用光学互连来解决vlsi的引线问题,以及芯片之间、插板之间的连接问题。此外。光学运算的高度并行性和快速实现大信息量线性运算的能力,如矩阵相乘,二维线性变换,二维卷积、积分等,也是用光学手段实现人工神经网络的有利条件。光学信息处理虽有高速度及大信息量并行处理和优点,但要满足模糊运算和随机处理的要求还是远远不够的。光学信息处理性能的改进,要求在传统的线性光学处理系统中引入非线性,而这些问题的解决与神经网络的光学实现恰好不谋而合。光学信息处理中的许... -->>
本章未完,点击下一页继续阅读